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IMPLICIT APPROXIMATE-FACTORIZATION SCHEMES FOR THE EFFICIENT SOLUTION

OF STEADY TRANSONIC FLOW PROBLEMS

W. F. Ballhaus,* A. Jameson, t and J. Alberttt

Ames Research Center
and

Ames Directorate
U.S. Army Air Mobility R&D Laboratory

INTRODUCTION

The objective of this work was to determine the feasibility of using
implicit approximate-factorization algorithms (AF), instead of successive
line over-relaxation algorithms (SLOR), to solve steady-state transonic flow
problems. In this investigation, two AF solution procedures are compared
with SLOR in terms of efficiency, reliability, and flexibility.

Murman and Cole (ref. 1) developed the first computer-programmable SLOR
algorithm for the solution of transonic flow problems. That solution proce-
dure proved to be about an order of magnitude more efficient computationally
than the first computer-programmed transonic flow algorithm, the explicit,
time-accurate procedure of Magnus and Yoshihara (ref. 2). Since that time,
the Murman-Cole procedure has been improved, extended, and applied to a
variety of aerodynamic problems (reviews are given in refs. 3 and 4). SLOR
algorithms have generally proved to be reliable, in the sense of convergence,
and flexible, in the sense that they can be easily adapted to a wide range of
applications.

A practical limitation on the class of problems that can be treated is
the computer time required to obtain a converged solution. Hence a number
of potentially more efficient iterative solution procedures have been pro-
posed as alternatives to SLOB. These are semidirect methods using fast
Poisson solvers, extrapolation, the multigrid approach, and implicit approxi-
mate factorizations.

In recent years fast direct methods have been developed for solving
matrix equations for the discrete Laplacian (refs. 5-7). For the transonic,
small-disturbance potential equation

*Research Scientist, Ames Directorate, U.S. Army Air Mobility R&D
Laboratory.

tProfessor, Courant Institute of Mathematical Sciences, New York
University.

ti-Summer employee, Ames Research Center, NASA, presently a student at the
University of Santa Clara.



(k - 0x)$xx 
+ 0 y = 0
	

(1)

this suggests an iteration procedure of the form

^n+1 + ^n+1 = (1 + 4 n - k)On	(2)
xx	 yy	 x	 xx

such that a discrete Poisson equation is solved for each iteration n.
Such a scheme has been proposed by Martin and Lomax (ref. 8) and by Martin
(ref. 9). Schemes of this type produce substantial increases in computational
efficiency, especially for cases with embedded supersonic regions that are
small. However, their application has been limited because the most efficient
Poisson solver algorithms require uniform grid spacing in all but one coordi-
nate direction, and they require special, complex treatment of internal
boundaries. A hybrid Poisson solver-SLOR scheme proposed by Jameson (ref. 10)
avoids these difficulties for some special cases of two-dimensional flows by
introducing a coordinate mapping in a simple domain.

Extrapolation has proved useful for the acceleration of SLOR convergence
in cases in which a dominant eigenvalue exists and can be identified (refs. 11
and 12). It has also been used, in a somewhat different form, to accelerate
convergence in the fast Poisson solver approach (refs. 8 and 9).

The multigrid method was first proposed by Federenko (ref. 13), developed
by Brandt (ref. 14), and recently applied to the solution of transonic flow
fields by South and Brandt (ref. 15). Preliminary results indicate a sub-
stantial increase in efficiency over SLOR for computations on uniform meshes.
However, the method is sensitive to the aspect ratio of the mesh cells,
leading to complications in the treatment of nonuniform grids.

Here we test approximate-factorization schemes to determine if tt
capable of providing accelerated convergence and whether there are any
restrictions limiting their application to transonic flow calculations

APPROXIMATE FACTORIZATIONS

General Requirements

We seek the solution to the difference equation

LO = (AS xx+ 6yy)$ = 0

where Sxx and 6 y are second central difference operators, ¢ is t
solution vector, and A is a constant. An iterative solution procedt
solve (3) can be written
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NC  + aLon = 0
	

(4)

where C  is the correction vector on
+ 1
 - yI computed for cycle n+l. We

will call R =_ Lon the Yesidual at the nth iteration, and a is a parameter
to be determined.

Let en = 0n -	 be the error after the nth cycle. Then Cn - 
en+1 - en.

and equations (3) and (4) can be combined to give

en+l M e
n = M2 en-1 =	

Mn+1 e 	 l

M=I - aN 1L
1l	 (5)

For the iteration procedure to converge, the modulus of every eigenvalue of
M must be less than unity.

The type of an iterative solution procedure is determined by the choice
of the operator N. To ensure convergence, N should be chosen to resemble
the operator L as closely as possible and, furthermore, N-1Lyn must be
easily computable. If N is identical to L, for example, then M = I - oN 1L
vanishes (for a = 1), and an exact solution to Lo - 0 is obtained in a
single cycle. In the special case of the discrete Laplacian in a rectangular,
uniform, Cartesian grid, this can be accomplished by the use of one of the
fast Poisson algorithms. It is usually impractical to invert L, however,
and one must use an iteration scheme in which N is an approximation to L.
For example, for SLOB

NCi1j = 16 
y 6x 2 + 0x2 Ex1] Ci.j -aLQ

i,j 	(6)

where i,j are grid point indices in the x,y directions, EX1Ci^j = Ci-1,j,
and a is the relaxation parameter. Note that N contains the

6 
y operator in L but contains only the lower diagonal part of the dXX

operator. Hence, SLOR will require more than one cycle to converge.
Actually, the required number of cycles will increase as the number of x
grid points increases, because a grid point is only influenced by a single
grid point to the right of it in the x direction during one cycle.

The underlying idea of the approximate factorization methods is to
construct N as a Froduct of two or more factors

N = N 1 N2 . . . 
N 

each of which is restricted to a form leading to e quations that can be easily
solved. For example, each factor may have a block tridiagonal structure.
On the other hand, the added flexibility resulting from the use of several
factors allows L to be more closely approximated by N. Moreover,

i
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algorithms can be constructed along these lines in such a way that the final
N operator is fully implicit, so that every grid point is influenced by every
other grid point during each cycle.

AF Scheme 1

Considering equation (3) in the case when A > 0 so that the equation is
elliptic, an approximate factorization can be realized as

(a - 6yy)(a - Adxx)Cn = oaL^ n	 (7)

where a is a parameter to be chosen, and a is an over-relaxation factor.
Multiplying out the two factors on the left, the operator N, which should
now be an approximation to aL, has the form

N=aL-a 2I- 6 AS
yy xx

The successof the method will depend on aL dominating the error terms
-a 2I - 6yyASxx . The required equations can easily be solved by letting

fn = (a - A6xx) Cn and solving directly for f. the tridiagonal matrix equa-

tion

	

(a - 6yy ) fn = oaL^n 	(S)

followed by a direct solution for C  of the tridiagonal matrix equation

	

(a - ASxx) Cn = fn 	(9)

To estimate the rate of convergence for this scheme (which is a reformu-

lation of the Peaceman -Rachford scheme) note that equation (7) can be written
in the form

(a - 5yy) (a - A6xx)en+1 = oaL en 	(10)

Now, assuming periodic boundary conditions and a uniform Cartesian grid, let

m

en (x, y) _	 On(p,q ) eipx elqy	 (11)

p,q=1

Because equation (10) is linear, we need consider only a dingle arbitrary
Fourier component. Substituting in (10) and rearranging gives, in the case
when a = 2,
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S = 
Gn+1 = a - Q 2 (1 - cos n)	 a - 2A (1 - cos f,)	

(12)
GP	 a + 2 (1 - cos n)	 a + 2A (1 - cos ^)

Ay e	0x2

where n - qAy and C = pAx. For stability, that is, for the error to
approach zero in the iteration procedure,

101 < 1	 (13)

and this condition is satisfied for all E and n eigenvalues in (12).

The number of iterations required to reduce the residual to a predeter-
mined amount depends on 101; that is, fewer iterations are required to
achieve a specified degree of convergence as JBI decreases. The convergence
rate, therefore, depends strongly on the choice of a. The choice

a - —
2 

(1 - cos n)
	

(14)
oy2

gives 6 - 0 for the particular eigenvalue n. Hence, for a problem with k
grid points in the y-direction, corresponding to k eigenvalues, the solu-
tion process will converge to zero error after k cycles.

Precise estimation of the eigenvalues is generally not practical.
Instead, a repeating sequence of a's can be used with each element of the
sequence chosen to maintain small values of 101 in a given range of
eigenvalues (see ref. 16). Maximum and minimum values of a are estimated
and then used to form a geometric sequence to cover the entire eigenvalue
spectrum. The lowest eigenvalue is given approximately by n - Ay, which,
from equation (14), gives aR - 1. For the high frequency error components,
n - r corresponding to a  - 4/6y 2 . The sequence

a = aR 
TO'h 

J	 k = 1,2,	 ., M	 (15)k 
R/

is then used repetitively during the course of the computation. The sequence
is adjusted in the following section to optimize convergence for particular
transonic flow field computations.

In solving equation (1) for transonic flow computations, scheme (7) is
suitable for the treatment of the subsonic part of the flow, where
A = (k - fix) > 0. To extend the scheme to treat flows with embedded super-
sonic zones, the factorization is modified at supersonic points, where
A = (k - fix) < 0, to the form

(-AS
xx

 - 6yy)aCn = caL^	 (16)
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where 6	 is the upwind second difference operator. Here, because of the
use of upwind differencing, it is feasible to shift the term Aaxx to the
first factor while retaining an easily invertible form, and the second factor
is essentially eliminated. On setting a = 1, the result is a transition to 	

g

the fully implicit marching scheme of Murman and Cole (ref. 1) in the super-
sonic zone. Transonic operators are used at the sonic and shock points to
maintain conservation form (ref. 17). A term 01  Qx is a first-order, first 	

k

upwind difference operator) is added to the first factor as a stabilizer with

S - Ox. At the shock point, D6x is added to the second factor for the first

fsw cycles to prevent instabilities associated with shock motion (e.g., see	 r

ref. 3 or 18).

AF Scheme 2

Implicit approximate-factorization schemes for the low-frequency tran-
sonic equation

K1$xt = (k - $X) $xx + ^yy	
(17)

where K1 is a constant, were investigated by Ballhaus and Steger (ref. 18).
For the conservative schemes tested, an instability appeared whenever the
following two conditions were satisfied: (1) the differencing was shifted
from upwind to central across a shock and (2) the shock propagated at a rate
greater than one spatial grid point per time step. However, a nonconservative-
in-time (but conservative in the steady state) scheme was found to be much
less suscgptible to this instability. For this scheme it is not necessary
to add D6x at the shock to maintain stability as for AF scheme 1. This is
an attractive feature, since the appropriate value of D is difficult to
determine. The scheme, a factorization of (17) which we will call AF
scheme 2 (ref. 18), is

[a - (1 - E i )AjIx - ej_1AJ-16X)[a6x - 6yyICn

_ {adyy + a6X [(l - Ei )A1 6x + 

Ej-

1Aj-16XljOn	
(18)

where E3{= ( 0 ) for Aj W zero, Ai = k - (,n - ^n )/2Ax, a = (At)-1,

and 6x, 6x are first-order, first forward, and backward difference operators.

Note that the algorithm can be coded so that the ^ array need be stored for
only a single time level (ref. 18). Note also that for subsonic flow

(Aj > 0), AF scheme 2 can be derived from AF scheme 1, equation (7), by

replacing a by a6x and then removing 6x from the second factor and the

right-hand side.

Substitution of form (11) into (18) leads to an error growth factor a
that is not real. Choosing a to minimize 8 is therefore more difficult,
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and, in fact, there is no choice of a that can cause 0 to be zero for a
given eigenvalue. Approximate values of a t and a for equation (15) are
1 and Ay-1 . Of course, there is no guarantee that (15) is the optimal
functional form for the acceleration parameter sequence.

Thus, it appears at first glance that AF scheme 2 cannot be so highly
tuned for rapid convergence as AF scheme 1, but it shows potential for greater
convergence reliability because of its treatment of ehock waves.

OPTIMIZED ACCELERATION PARAMETERS

Determination of the optimum relaxat on parameter for SLOR, or the
optimum acceleration parameter sequence for approximate factorizations, for a
practical computation is a formidable task to achieve analytically. However,
comparisons of both optimum and non-optimum SLOR and approximate factorizations
would be useful in assessing the relative merits of these solution procedures.
Therefore, we have selected particular representative transonic flow problems
for which 'optimum" acceleration parameters can be determined by numerical
optimization.

The numerical optimization problem is formulated in the following way.
First, we select as the objective, that is, the quantity to be minimized,
a combination of parameters that represents the computational efficiency
associated with a given set of decision variables:

OBJ = (Rn/R 1 ) 1/N	(19)

OBJ is related to the average decrease in the residual per iteration, Rn is
the maximum residual at the nth iteration, and N is the number ,f iterations
required to reduce the maximum residual to some specified value.

Next, we define the decision variables, which are parameters that affect
the convergence rate. For SLOR the decision variables are the subsonic
relaxation parameters, one for each of the multiple meshes used to converge
the solution. The supersonic relaxation parameter is always unity. For both
AF schemes, the accleration parameter sequence is

a  = aR (1/y ) `k-1	k = 1,2,3, . . . , M
	

(20)

and the decision variable used in the optimization is y. The initial guess

is y = (aR/ah) 1/2M, where at and ah are given in the previous section.
For coarse, medium, and fine grids, values of k, 6, and 8, respectively,
were used for M.

The finite difference AF and SLOR codes were coupled with an executive
optimization code, CONMIN (ref. 19). CONMIN is designed to minimize an
objective, for a set of decision variables, subject to specified constraints.

7



Here the only constraint imposed was a limit of 2 on the relaxation parameter
for SLOR.

The present optimization formulation was designed to be as simple and
economical as possible. Only single parameter optimizations are performed
on each grid for both the AF and SLOB schemes. There is certainly no guaran-
tee that either the functional form (20) or the arbitrarily chosen values of
M used are optimum.

COMPUTED RESULTS

The convergence characteristics of the SLOR and AF schemes are investi-
gated here for a simple test problem. The problem is that of computing the
flow field about a nonlifting, parabolic-arc airfoil with a thickness-to-
chord ratio of 10 percent. Three free-stream Mach numbers are considered:
(1) M. = 0.7, a subcritical case; (2) M^ - 0.84, a supercritical case; and
(3) Mw = 0.9, a highly supercritical case. Computed surface pressure
coefficients for these three cases are shown in figure 1. For all of the
computations reported here, the solution process was considered completed
when the absolute value of the maximum flow field residual dropped below
10- 9 . Here the residual is defined as Qx2Lp.

The optimum convergence history of the AF and SLOR schemes for the
M„ - 0.7 case is shown in figure 2(a). This computation was performed
using a single, fine grid with (128x32) (x,y) grid points. SLOR required
350 iterations as opposed to 34 and 45 for AF schemes 1 and 2. The peaks in
the AF schemes' convergence histories correspond to the smaller values of
a(i.e., larger values of At) in the eight element sequence.

SLOB convergence can usually be accelerated by the use of coarse-to-fine
mesh interpolations. For example, converged solutions on a (64 x16) grid
were interpolated onto the fine (128x32) grid to provide a good starting
solution. The resulting fine grid convergence history is illustrated in
figure 2(b). Interpolation reduced the number of SLOR fine-mesh iterations
from 350 to 141. Its effect on the AF schemes was small. Similar results
are shown in figure 3 for the MW - 0.84 case. The use of multiple meshes
accelerated SLOR convergence here as in the M„ - 0.7 case. It also improved
the AF-2 scheme convergence somewhat, but perhaps not enough to justify the
additional complexity and computational work required in generating coarser
grid solutions. However, the use of multiple meshes seems to be extremely
important for AF-1. Good initial guesses approximately locate the shock wave
and thus help prevent the "moving shock instability" mentioned in the
preceding section. Difficulties with this type of instabilit y were obtained
in the "fine grid only" case, and hence results for that case ar g not
reported in figure 3(a). For 11. = 0.9, the supersonic bubble extends verti-
cally from the airfoil surface to a point close to the far-field grid bound-
ary. The optimum convergence history for this case is illustrated in fig-
ure 4. Instabilities were encountered with AF-1 for both grid systems. In
the fine grid only case, AF-2 required an order of magnitude fewer iterations

8



for convergence than SLOB. Coarse-to-fine mesh interpolation cut the required
number of SWR iterations in half but had very little effect on the AF-2
scheme convergence. The local peaks in the SLOB convergence history, fig-
ure 4(b), correspond to changes in the location of the maximum residual.

Up to this point we have compared the convergence performance of optimum
SLOR and optimum AF, where here 'optimum" refers to values of acceleration
and relaxation parameters obtained from the single parameter numerical opti-
mization procedure outline in the preceding section. However, in engineering
work optimum parameters are almost never used. A good solution procedure
must therefore provide fast, reliable convergence for a reasonable range of
nonoptimum parameters. To test the nonoptimum behavior of the SLOR and AF
schemes, we applied the optimum values obtained for the subsonic case,
Mm - 0.70, to the two supercritical cases, M m - 0.84, 0.90; results are
shown in figures 5 and 6. Table 1 summarizes all of the results presented
here in terms of number of iterations required to achieve convergence.
Table 2 gives optimum values of the accele aa.ion and relaxation parameters.
Results for coarse and medium grids are alnu included.

It is clear from Table 2 that the optimum acceleration parameter sequence
is much more sensitive to the grid than to M.. For example, optimum values
of y for AF-2 range from 1.363 to 1.455 for the fine grid over all three
Mach numbers and both mesh systems. Hence, there is only slight deteriora-
tion in convergence performance in the nonoptimum cases, and the effect of
mesh system is very small. The nonoptimum SLOR results appear to be
dominated by the difference between the optimum relaxation parameters for
the fine grid only (aOpT = 1.965) and for the fine grid with interpolation
(aOpT = 1.919). The Mm 0.70 optimum acceleration parameter for the fine
grid only case is nearly equal to that for M. = 0.84. However, for the
interpolated case, the optimum values for the two Mach numbers are substan-
tially different. Hence, the fine grid only case converges faster, although
less smoothly. Results for the AF-2 scheme at Mm = 0.90 show the same trends
as for M. = 0.84, that is, the convergence performance is (1) nearly equal to
that for the optimum case and (2) insensitive to mesh interpolation. In the
fine grid case, SLOR diverges because of the excessively large relaxation
parameter.

CONCLUDING REMARKS

The present study indicates that implicit, approximate-factorization
schemes can provide rapid and reliable convergence in finite-difference
transonic flow computations. These schemes can be easily coded, require
about the same storage as, and only about 50 percent more computational work
per iteration than, present successive line over-relaxation algorithms. They
can be used to obtain solutions on nonuniformly-spaced grids, a feature aot
presently available in some of the other convergence acceleration schemes.

Of the two AF schemes investigated here, AF-1 converged the most
rapidly. However, it was found to be very susceptible to the "moving shock

9
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wave instability" discussed in references 3 and 18. AF-2 was found to be
insensitive to this instability for the cases computed here, and its conver-
gence was found to be at least as reliable as that of SLOR and substantially

faster.

There should be no fundamental problems in applying the AF schemes to
lifting cases. However, the application of these schemes to practical
three-dimensional cases, or to the solution of the full potential equation,
should be more difficult. The problem is to devise a stable, easily solvable,
implicit factorization for the governing equations, which are complicated by

the presence of cross derivatives.
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TABLE l.- NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE

rim Grid Parameters AF-1 AF-2 SLOR
system

0.7 Fine only Opt 34 45 350

Interpolated Opt 29 44 141

0.84 Fine only Opt -- 84 352

Non Opt -- 99 373

Interpolated Opt 51 66 253

Non Opt 58 101 508

0.90 Fine only Opt -- 82 819

Non Opt 91 --

Interpolated Opt 72 411

Non Opt 93 688



TABLE 2.- OPTIMUM ACCELERATION AND RELAXATION PARAMETERS

M Grid
y(AF-1) y(AF-2) SLOR

Cv system

0.70 Fine only 1.813 1.386 1.965

Interpolated (1) 2.276 (1) 1.576 (1) 1.830

(2) 1.979 (2) 1.428 (2) 1.903

(3) 1.843 (3) 1.363 (3) 1.919

0.84 Fine only --- 1.400 1.961

Interpolated (1) 2.319 (1) 1.730 (1) 1.821

(2) 2.087 (2) 1.531 (2) 1.911

(3) 1.895 (3) 1.455 (3) 1.960

0.90 Fine only --- 1.414 1.926

Interpolated (1) --- (1) 1.765 (1) 1.858

(2) --- (2) 1.417 (2) 2.O1a

(3) --- (3) 1.404 (3) 1.976

Note: Numbers in parentheses correspond to mesh systems listed below:

	

Mesh	 No. x points	 No. y points

(1) 32	 8

(2) 64	 16

(3) 128	 32

aStability was maintained in some cases for relaxation parameters
slightly greater than 2.
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